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Structure and Thermodynamics of the Classical 
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An exact solution of the mean spherical approximation for charged hard spheres 
in a neutralizing background is used to calculate various static properties of the 
classical one-component plasma in the strong coupling regime. The expressions 
involved are simple and analytic, and involve the charged hard sphere diameter 
as the only unknown parameter, which we determine using an approximate 
scaling property of the direct correlation function. Results obtained for struc- 
tural correlation functions and various thermodynamic quantities are in very 
good agreement with the Monte Carlo simulation data. 

KEY WORDS: Mean spherical approximation; classical one-component 
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1. I N T R O D U C T I O N  

There has been much  interest in the study of ionic fluids. The classical 
one-componen t  plasma (OCP) is probably  the simplest such fluid. It is 
consti tuted by an active species of identical point  charges embedded  in an 
inert neutralizing background.  Apar t  f rom serving as a useful model  (1'2~ in 
the s tudy of astrophysical objects and  plasma physics, the OCP  and its 
variations (2) have recently started finding applications in the s tudy of liquid 
metals, molten salts, and superionic conductors .  Because of the scaling 
property of its interaction potential, the the rmodynamic  state of an OCP  
can be characterized by a single-parameter F. It denotes the ratio of the 
average potential to the average kinetic energy, F -- f l e 2 / a ,  for a system of 
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particles of charge e at the inverse temperature B = (kB T)-1 and with an 
average number density n corresponding to an average ion-sphere radius a 
(i.e., n - l =  4~ra3/3). We shall be considering only the static properties of 
the system in the strong coupling (i.e., F >~ 1) regime. 

The interest in this field has been stimulated by exhaustive Monte 
Carlo (1-6) (MC) and molecular dynamics simulations leading to accurate 
data for different structural correlation functions and thermodynamic 
quantities for 1 ~<F~< 180. To understand these data qualitatively, the 
hypernetted chain (HNC) equation (7) and the mean spherical approxima- 
tion (8'9) (MSA) for charged hard spheres have proved to be quite useful. 
An apparent shortcoming of both methods (7'9) is the large thermodynamic 
inconsistency, i.e., the isothermal compressibility calculated from the long- 
wavelength limit of the static structure factor differs significantly (~40% 
near crystallization) from that calculated by differentiating the equation of 
state. The thermal energies in both approximations also deviate appreciably 
(again by about 40% near crystallization) from the Monte Carlo data. (6) 
Further, the amplitudes of different correlation functions do not agree with 
the corresponding results from MC simulations. (3-5~ Recently MacGowan 
has improved (however, at the cost of more numerical work) the results of 
Gillan, (9) firstly (1~ using the stationarity property of the Helmholtz free 
energy, and secondly (11) using the criterion of thermodynamic consistency, 
to determine the packing fraction ~. 

In order to overcome the shortcomings in the HNC equation, Rosen- 
feld and Ashcroft (12~ have given its semiempirical modification. They have 
approximated the contribution of bridge diagrams by a form valid for a 
hard sphere fluid, whereby the hard sphere diameter (or the packing 
fraction) is determined by the requirement of thermodynamic consistency. 
A modification of the MSA has also been recently obtained by Chaturvedi 
et al. (13) They have introduced two new parameters through a term in the 
direct correlation function to account for the intermediate-range correla- 
tions. These parameters are then determined by building in the Monte 
Carlo equation of state and the thermodynamic consistency. The results of 
both these attempts (12'13) are very promising but a considerable amount of 
computational work is still required for their solutions. 

The purpose of the present paper is to show that results of comparable 
quality can be obtained in a much simpler way. This is achieved by using 
the MSA (s'9) as such so that the direct correlation function c(r) is given by 
a simple algebraic expression. The only unknown parameter is the charged 
hard sphere (CHS) diameter 0 which is determined using a scaling property 
of c(r). Results obtained for different correlation functions, internal and 
thermal energy are in very good agreement with the MC data. (4-6) 
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2. THE MODEL 

The classical one-component plasma is considered O) a system of 
charged hard spheres in an inert neutralizing background. It is quite 
plausible at strong couplings since the CHS diameter may then be inter- 
preted as the diameter of the Coulomb hole around the point particle. This 
model system has been solved exactly by Palmer and Weeks (8) in a mean 
spherical approximation. Their result for the direct correlation function, 
appropriate for an OCP, can be written as 

c(r)={ AFBr+Cr2+Dr3+ErS'-- for for rr<)t>2t (1) 

where 2~ = a/a and r is expressed in units of a. The coefficients in Eq. (1) 
are given as 

(1 + 2r/) 2 Q2 (1 + 7)QK (5 -'l- 72)K 2 
= + ( 2 a )  

A (1 - 7) 4 4(1 - 7) 2 127 607 

B = 32t2M2/4, C = r / 2  (2b) 

D = ~ 6 ( A + 2 ~ - U - ) ,  and E = F / 1 6 0  (2c) 

where 7 = (~r/6) no3= (~/2) 3 and x = (37~2F) J/2 are the packing fraction 
and the Debye-Hficket inverse screening length, respectively. Furthermore, 

I1 I 'j2} Q _  1 + 2 ~  - 1+  (3a) 
1 - 7 (1 + 2 n )  2 

M = Q2/24 7 - (1 + 7 /2 ) / (1  - 7) 2 (3b) 

and the excess internal energy U is given by 

Bu r 1 + , -  + - 2 ( - ' )  (3c) N X T 

Apart from c(r), other correlation functions of interest are the pair 
correlation function g(r) and the static structure factor S(q). They are 
given by 

1 S(q) - 1 - Y(q) (4) 
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and 

fo~dqq[ S(q) 1 ]sin(qr) g(r) = 1 + 

where q is expressed in units of a-~. In addition, g(q) 
transform of c(r) and is given by 

g(q) = (3h3/x6){ Ax3(sinx - x cosx) 

( 5 )  

is the Fourier 

+ B X x 2 [ 2 x s i n x - ( x  z -  2)cosx - 2] 

+ C?t2[ (3x 2 - 6)sinx - (x 2 - 6)x cosx ] 

+DX3[ (4x  2 -  2 4 ) x s i n x - ( x  4 -  12x 2 + 24)cosx + 24] 

+ EhS[6(x 4 - 20x 2 + 120)x sinx 

- ( x  6 -  30x  4 + 360x  2 - 7 2 0 ) c o s x  - 7 2 0 ] / x  2 

- ( rx4 /X)cosx}  (6) 

where x = Xq. 
In calculating any of the above quantities, only the CHS diameter o 

enters as the unknown parameter. It is well known that the hard sphere 
correlation functions have built in jump discontinuity at the HS boundary. 
Gillan (9) has determined o by requiring that the pair correlation function 
should be continuous at the hard sphere boundary. This requirement can 
be seen to imply (8) that the coefficient M given by Eq. (3b) vanishes. The 
value of o thus obtained shall be denoted by %. Since the results obtained 
using this choice for o are not very encouraging, a different track will be 
followed. It can be seen that for large values of F, the direct correlation 
function is in leading order a linear function of F so that c(r)/F is nearly a 
scaled quantity. In particular, the Monte Carlo data (2'14) indicate that for 
F ~> 10, the value of c(r = 0 ) /F  is around - 1.33 irrespective of the value of 
F. This is taken as a new criterion to calculate o, which from Eq. (1) implies 
that 

c(r = 0) = A = - 1.33r (7) 

Accordingly the solution to Eq. (7) provides a unique value for o which we 
term as o e. 

It is now straightforward to calculate any of the correlation or thermo- 
dynamic functions. The results obtained this way are presented in the next 
section and are compared with the Monte Carlo data. 
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3. RESULTS AND DISCUSSION 
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3.1. Correlation Functions 

The results for the direct correlation funct ion for F = 80 and 160 are 
plotted in Fig. 1. The M C  values are due to DeWit t  and are taken f rom 
Ref. 12. It is seen that the present results (i.e., with o = %)  are in much  
better agreement  with the M C  data. A small j u m p  discontinuity (m'] 1) at the 
hard  sphere boundary  is due to the HS nature of the approximat ion which 
is not  constrained to become zero as is the case (9) with the choice o = %. In  
order to verify that c(r)/F is a scaled funct ion of r, we plot this quanti ty 
for F = 20, 40, and 200 in Fig. 2. The three curves lie very close to one 

200  
cr I " \  
1501 ,\i 
100 

f 
~ ' ~.; ' ~.o ~.o 

r / o  

Fig. 1. The direct correlation function c(r) of the OCP for F = 80 and 160. Dashed curve is 
obtained for the choice o = %. Full curve represents the present results, i.e., those obtained 
with the choice o = ap as given from Eq. (7). The filled circles are the Monte Carlo results of 
DeWitt and are taken from Ref. 12. (In the figures r and q are expressed in their natural 
units.) 
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The present  results for c(r)/F versus r/a for F = 20, 40, and  200. The  filled circles 

represent  Mon te  Car lo  results of DeWi t t  a t  F = 160. 
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Fig. 3. The O C P  static s t ructure  fac tor  S(q) versus qa at  F = 160. The  curves are labe led  as 
in Fig. I. The  M o n t e  Car lo  da ta  (filled circles) are due  to G a l a m  and  H a n s e n  (Ref. 4). 
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Fig. 4. Here the present results for the static structure factor are plotted at different values of 
F. The filled circles represent the Monte Carlo data of Galam and Hansen (Ref. 4). 

another. In fact, the maximal difference between the values of c ( r ) / F  for 
s = 40 and 200 is less than 3%. The results for the static structure factor as 
obtained from Eq. (4) are presented in Figs. 3 and 4, and are compared 
with the tabulated data of Galam and Hansen/4) The present results 
represent a large improvement over the results o) for o = o 0 and also over 
the results of MacGowan, (~~ and are in very good agreement with the 
MC data. For the sake of clarity, the results of S(q)  obtained for o = o 0 are 
plotted only in Fig. 1, for F -- 160. 

The pair correlation function is obtained from Eq. (5) by Fourier 
transforming S(q). Here we have a convergence problem in the small r 
region because the dominant term in the large q expansion of S(q)  is 
proportional to the coefficient M which is not zero in the present case. In 
order to overcome this problem, we take g(r) to be equal to zero in the hard 
core region--in accordance with the basic assumption of MSA. Its value at 
the HS boundary is calculated analytically from (s) g(r = o + ) = - M .  For 
distances larger than the hard sphere diameter, g(r) is determined from Eq. 
(5). For that, the integral in Eq. (5) is truncated after q = 4300 and the 
integration interval is divided in 500 parts. Integration in each of these 
subintervals is done using the Gauss quadrature method with five points. In 
order to make sure that integration in a subinterval is done correctly, this 
subinterval is continuously halved until a desired relative accuracy (in the 
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Fig. 5. The OCP pair correlation function g(r)  at F = 160. Dashed curve is obtained for 
o = o 0 and the full curve represents the present results (i.e., with o = op). The dotted line at 
r = op indicates the jump discontinuity in the value of g(r  = op). The Monte Carlo data (filled 
circles) are due to Slattery et al. (Ref. 5). 
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Fig. 6. The present results for the pair correlation function versus r / a  at different values of 
F. The dotted line for each F indicates the discontinuity in the value of g(r) at the hard sphere 
boundary. Filled circles for F = 80, 110, and 140 represent the Monte Carlo data of Slattery et 
al. (Ref. 5). The Monte Carlo data at F = 40 are taken from Brush et al. as Slattery et al. have 
not given the data for F < 80. 
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present case 0.10) is reached. Demanding a still better relative accuracy of 
0.02 leaves the present results practically unchanged. Further, to check that 
there is no appreciable truncation error, the upper limit was raised to 6500. 
The results so obtained differ negligibly from the present results except in 
the immediate vicinity of the HS boundary ( o + <  r ~  1.1o) where the 
maximum discrepancy between the two is about 5%. The present results for 
the pair correlation function are plotted in Figs. 5 and 6 and are compared 
with the tabulated data of Slattery et al. (5~ As can be seen the agreement 
with the MC data is excellent beyond the first peak region. The well- 
known (9-13) discrepancies near the first peak region remain and their origin 
lies in the hard sphere feature of the approximation. Remember, that the 
object approximated by a charged hard sphere is in fact a point charged 
particle surrounded by a spherical empty space in which no other plasma 
particle is able to penetrate owing to strong Coulomb repulsions. A small 
overlap of such Coulomb holes is possible in principle which, however, is 
not allowed in the hard sphere model. This leads naturally to a severe 
constraint on the behavior of the pair correlation function near the hard 
sphere boundary. This also seems to be the reason for the failure of MSA 
and its modification (13) in the small-F region, since in this region the 
Coulomb hole becomes softer and softer owing to reduced Coulomb 
repulsions. In this region the hypernetted chain equation works (12~ quite 
well. 

3.2. Thermodynamics 

An important quantity for the calculation of thermodynamic proper- 
ties of a system is its internal energy. Other thermodynamic quantities like 
specific heats, compressibility, and thermal expansion coefficients etc. can 
be easily obtained (2) from it. Presently, the excess internal energy U is 
calculated from the analytic expression given by Eq. (3c) and the numerical 
results obtained are given in Table I. For comparison, we list the very 
recent Monte Carlo data of Slattery e ta / .  (6) where they have analyzed the 
N dependence of the results for U. The MC value of U for a particular F 
given in the table corresponds to the smallest value of N beyond which the 
numbers for the internal energy become practically N independent. As can 
be seen, the present results (i.e., with o = op) are in very good agreement 
with the MC data. For example, the deviation which at F - -80  is about 
0.1%, gradually diminishes to less than 0.01% for F = 160. On the other 
hand the corresponding deviation for the choice (9) a = o 0 is about 0.54% 
and remains constant with increasing F. 

It is known (3~ that at stronger couplings, the purely static energy U 0 
(i.e., the value of the internal energy for a perfect bcc lattice, f l U o / N  = 
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Table I. The Charged Hard Sphere Dlameter %, the Correspondlng Packlng 
Fractlon ~, and the Excess Internal Energy f l U / N  a 

F o p / a  ~1 - ( f l U / N ) , ~ : o p  - ( f l U / N ) M  c - ( f U / N )  . . . .  

10 0.985 0.120 8.053 7.998 8.053 
20 1.223 0.229 16.759 16.673 16.667 
30 1.300 0.275 25.534 25.439 25.373 
40 1.348 0.306 34.349 34.255 34.125 
50 1.382 0.330 43.188 43.102 42.907 

60 1.408 0.349 52.045 51.956 51,710 
70 1.429 0.365 60.915 - -  60.529 
80 1,446 0,378 69.793 69.725 69.360 
90 1.461 0.390 78.683 - -  78.202 

100 1.473 0.400 87.576 87.524 87.053 

110 1.485 0.409 96.479 96.411 95.91I 
120 1.495 0.418 105.384 105.343 104.775 
130 1.504 0.425 114.295 114.264 113.645 
140 1.512 0.433 123.211 123.181 122.520 
150 1.520 0.439 132.129 132.115 131.399 

160 1.527 0.445 141.051 t41.039 140.282 
170 1.533 0.451 149.976 149.966 149.169 
180 1,539 0.456 158.904 - -  158.059 
200 1.550 0.466 176.762 176.765 175.848 

The results for f i U / N  for o = o 0 and o 
Monte Carlo data. 

= Op are compared with the recent (Ref. 6) 

-0.895929F) accounts for most of the internal energy. Thus it is very 
important to know the thermal fraction of the energy, 

/~au_ ~ 
N ( U -  U0) (8) 

very accurately, if the fluid-solid transition is to be located precisely. 2 In 
Fig. 7, the results for the thermal energy are plotted over the whole range of 
F and are compared with the MC data. (6) Obviously, the small differences 
in the internal energies become very prominent. Accordingly it can be seen 
that the present results are in good agreement with the data, whereas 
deviations for the case o = o 0 are very large and are monotonically increas- 
ing with F. 

2 The latest value of F at which the fluid-solid transition takes place has been estimated to be 
178 -_ 1, by Slattery et  al .  using their most recent data (Ref. 6) on internal energies. 
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Fig. 7. Thermal energy ( U -  Uo)/Nk ~ T of the OCP versus F. Dashed curve is obtained for 
o = % and the full curve represents the present results. The filled circles denote the recent 
(Ref. 6) Monte Carlo results of Slattery et al. 

The only other thermodynamic quantity in which we are interested is 
the isothermal compressibility (15) X, which can be calculated in two ways--  
the difference in the two values being the measure of thermodynamic 
inconsistency. One way to calculate X proceeds from the equation of state, 
i.e., 

X ~ + 9- ~ (9) 

where X0 = f l / n  is the ideal gas isothermal compressibility. The second way 
to calculate X is(15) via the long-wavelength limit of structural correlation 
functions, e.g., 

X 0 _ l i m I  1 ~2 ] 
X q-+O S(q)  )Qq2 (10) 

so that 

X0 l _ 3 x 3 ( A  2 ~ __~  F )  
x + (11) 

The results obtained for the inverse compressibility from Eqs. (9) and (1 l) 
are plotted in Fig. 8 and are compared with the Monte Carlo data taken 
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Fig. 8. The OCP inverse compressibility Xo/X versus F. Dashed curve denotes the results 
obtained from Eq. (11) with the choice o = %. The dashed-dot ted  curve represents the 
corresponding results with the choice o = op. The full curve shows the results for Xo/X as 
obtained from Eq. (9), with the choice o = oe. The filled circles denote the Monte Carlo results 
taken from Ref. 12. 

from Ref. 12. The results for the virial compressibility [i.e., those computed 
from Eq. (9)] calculated with o = op are not distinguishable from the MC 
data. The other two curves in Fig. 8 show the results for X0/X as obtained 
from Eq. (11) using o = o 0 and o = oe. It is reassuring to note that the 
thermodynamic inconsistency in the present case has diminished by more 
than a factor of 3 from the o -- o 0 case. 

Interestingly, our values for the packing fraction ~ (listed in Table I) 
are quite close (especially for larger F) to those obtained by Rosenfeld and 
Ashcroft (12) from the hard sphere bridge functions (in the modified H N C 
equation), which fit the Monte Carlo data for g(r) best. For example, the 
deviation between the two around F = 80 is about 6% which gradually 
disappears around s = 160. Also the thermodynamic inconsistency which 
in both approaches is small, is about the same around F = 160. 

4. CONCLUDING REMARKS 

It is shown that the simple MSA expression (1) along with the criterion 
(7) for determining the charged hard sphere diameter, gives results for 
different static properties of the classical one-component plasma, which are 
in very good agreement with the Monte Carlo data. The only problem 
seems to be the region around the hard sphere boundary. While the mean 
spherical approximation, e.g., constrains g(r) to vanish abruptly at the HS 
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boundary, the Coulomb holes around point plasma particles have some 
scope of penetration. 

Recently,(16) we have applied this mean spherical approximation with 
very good success to calculate the static structure factor of liquid alkali 
metals, o was, however, determined from a point fit using the experimental 
data at the first minimum of S(q). We proposed there but did not take into 
account the effect of small charge polarization of alkali ions. We feel that if 
that is done and o is simply determined from Eq. (7), then results of the 
same quality as obtained earlier (16) can be obtained. 
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